Using Sequence Variants in Linkage Disequilibrium with Causative Mutations to Improve Across-Breed Prediction in Dairy Cattle: A Simulation Study

نویسندگان

  • Irene van den Berg
  • Didier Boichard
  • Bernt Guldbrandtsen
  • Mogens S. Lund
چکیده

Sequence data are expected to increase the reliability of genomic prediction by containing causative mutations directly, especially in cases where low linkage disequilibrium between markers and causative mutations limits prediction reliability, such as across-breed prediction in dairy cattle. In practice, the causative mutations are unknown, and prediction with only variants in perfect linkage disequilibrium with the causative mutations is not realistic, leading to a reduced reliability compared to knowing the causative variants. Our objective was to use sequence data to investigate the potential benefits of sequence data for the prediction of genomic relationships, and consequently reliability of genomic breeding values. We used sequence data from five dairy cattle breeds, and a larger number of imputed sequences for two of the five breeds. We focused on the influence of linkage disequilibrium between markers and causative mutations, and assumed that a fraction of the causative mutations was shared across breeds and had the same effect across breeds. By comparing the loss in reliability of different scenarios, varying the distance between markers and causative mutations, using either all genome wide markers from commercial SNP chips, or only the markers closest to the causative mutations, we demonstrate the importance of using only variants very close to the causative mutations, especially for across-breed prediction. Rare variants improved prediction only if they were very close to rare causative mutations, and all causative mutations were rare. Our results show that sequence data can potentially improve genomic prediction, but careful selection of markers is essential.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Producer uptake: how might genomic information get translated into industry outcomes

The Bovine Respiratory Disease Complex Coordinated Agricultural Project (BRD CAP) is a 5-year USDA-funded Coordinated Agricultural Project to develop genetic markers associated with bovine respiratory disease (BRD) to identify cattle that are less susceptible to BRD. Ultimately the aim of this project is to integrate predictive markers for BRD susceptibility into genetic tests and national catt...

متن کامل

A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change

Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide ass...

متن کامل

A whole-genome scan to map quantitative trait loci for conformation and functional traits in Canadian Holstein bulls.

Genetic improvement of livestock populations can be achieved through detection and mapping of genetic markers linked to quantitative trait loci (QTL). With the completion of the bovine genome sequence assembly, single nucleotide polymorphism (SNP) assays spanning the whole bovine genome and research work on large-scale identification, validation, and analysis of genotypic variation in cattle ha...

متن کامل

Accurate Estimation of Effective Population Size in the Korean Dairy Cattle Based on Linkage Disequilibrium Corrected by Genomic Relationship Matrix

Linkage disequilibrium between markers or genetic variants underlying interesting traits affects many genomic methodologies. In many genomic methodologies, the effective population size (Ne) is important to assess the genetic diversity of animal populations. In this study, dairy cattle were genotyped using the Illumina BovineHD Genotyping BeadChips for over 777,000 SNPs located across all autos...

متن کامل

Quantitative Trait Loci Affecting Milk Production Traits on BTA 14 in Iranian Holstein Dairy Cattle: A Confirmation

The aim of this study was to refine the position of previously detected quantitative trait loci (QTL) on bovine chromosome 14 affecting milk production traits, using both linkage analysis (LA) and combined disequilibrium and linkage analysis (LDLA) methods, in Iranian Holstein dairy cattle. Analysis data was LRT (likelihood ratio test) and computed using the DMU (estimate the (co)variance compo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016